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The partition function of an electron gas in the presence of scattering centers, such as exist in a dilute 
solution, is obtained by using the method first introduced by Matsubara. I t is shown that the electronic 
specific heat at low temperatures, in such a case, contains a term arising from virtual electron scattering. 
If the Fermi limit in the pure metal lies just beyond a sharp peak in the density-of-states curve, this term 
increases the specific heat. Comparison with the observations by Rayne on the dilute solid solutions of zinc 
and germanium in copper indicate that the effect discussed is probably the explanation of the observed initial 
increase in the low-temperature specific heat at small concentrations. 

1. INTRODUCTION 

TH E electronic properties of disordered alloys are 
difficult to analyze because there are no simple 

quantum numbers in terms of which the single-electron 
wave functions can be described. Equilibrium proper­
ties, however, are fully determined when the partition 
function is known, and this can be obtained as the trace 
of an operator with respect to any complete orthonormal 
set of total wave functions. For dilute solid solutions the 
Slater determinants of the Bloch functions of the pure 
metal form an obvious choice for such a set. In this 
representation, the wave function of the ground state of 
the alloy is not a single Slater determinant, as in the 
Hartree-Fock approximation for a pure metal, but an 
infinite series of such determinants. The first member of 
the series corresponds to the ground state of the pure 
metal, and the other members to various excited states. 
In wave-vector k space the alloy has not therefore a 
sharply defined Fermi surface in its ground state but one 
which is broadened by the effect of virtual electron 
scattering. There must, of course, always be a precisely 
defined Fermi limit in terms of the true one-electron 
states of the alloy but these are not representable in k 
space. When the solute concentration is a few percent, 
the broadening of the Fermi surface of the ground state 
will be large compared to the thermal broadening in the 
pure metal at low temperatures. 

If the density of states in the pure metal has special 
features lying just below the Fermi limit, these will not 
affect the low-temperature electronic specific heat of the 
pure metal, but they will affect that of the dilute alloy 
if the ground-state broadening, just referred to, is large 
enough to include these features. This appears to be 
exactly the situation which exists in copper and its solid 
solutions. In pure copper it is believed that the Fermi 
limit lies just beyond the peak of the density-of-states 
curve. Hence, in dilute solid solutions, the influence of 
this peak may be felt on the equilibrium properties and, 
in particular, on the low-temperature electronic specific 
heat. I t will be shown that in such a case it leads to a 
slight increase in the specific heat even when the electron 
concentration remains constant. This increase is closely 

* On leave of absence from Imperial College, London, England. 

related to the residual electrical resistance and is deter­
mined by the matrix elements of the scattering potential. 

2. PERTURBATION EXPANSION OF THE 
PARTITION FUNCTION 

The partition function is obtained as a particularly 
simple example of the method introduced by Matsubara1 

and developed by Thouless.2 Let H denote the complete 
Hamiltonian, N the number of electrons in a volume v, 
/5= 1/kT, and a=/z/3. If /J, denotes the partial potential a 
is the activity. The grand partition function Z is given 
by the trace of \f/} where 

a) 
(2) 

The wave functions | n), which are used for the evalua­
tion of the trace are Slater determinants of Bloch func­
tions including the spin factor and relating to the pure 
metal. 

To simplify the notation let 

and 
Z=Trt=Zn(n\eaN-PH\n). 

H-ixN=Ho+V(t), (3) 

where H0 is the Hamiltonian of the pure metal minus 
fxNy and V(r) is the potential energy of an electron due 
to the randomly distributed impurity atoms. V(r) is 
therefore the difference between the potential in the 
solid solution and that in the pure metal. 

The interaction representation is defined by 

\l/I=eHo^7 
and if we write 

H1(u) = eH°»V(i)(rH°u, 

(4) 

(5) 

or in terms of the creation and annihilation operators, 
CkW,Ck(u), 

then 

H1(u) = X(k\V\l)Ck(u)Cl(u), (6) 
k,l 

# r / d | 8 = - F i 0 3 ) * r , (7) 
1 T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351 (1955). 
2 D . J ; Thouless, Phys. Rev. 107, 1162 (1957); The Quantum 

Mechanics of Many-Body Systems (Academic Press Inc., New 
York, 1961). 
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which may be solved by iteration as follows: 

^r=l— / duiHi(tii)+I duif du2Hi(ui)Hi(u2) 
J 0 J 0 J 0 
r$ put pw 

— / duif du21 du%Hi(ui)Hi(u2)Hi(uz)+etc., 
Jo Jo Jo 

where 
P>Ui>U2>1 

The above solution not only satisfies (7) but also the 
boundary condition, I / T = 1 , when 0=0. 

From (4) and (2) it follows that, with ypi as 
given by (8), 

Zo~ T,n(n\<rB'P\n) ' 

where Zo is the partition function relating to the pure 
metal. The terms of the sum (8) can be evaluated in a 
manner exactly analogous to that used for the deter­
mination of the energy of the ground state in the many-
body problem. 

Writing 
So= 2_,k(ek—i*)Ck

+Ck, 

it follows from relations similar to (5), and applicable 
to any operator, that 

(10) 

An essential feature of Matsubara's method (cf. Ref. 2) 
lies in the following definition of the normal product 
which ensures that its trace in (9) vanishes: 

# [C*+C*]= (l-fk)Ck+Ck-fkCkCk+. (11) 

For example, the contribution to Z/Zo of any normal 
product occurring in (8) is given by 

(l/£o)E<» I e-^WZC+Cl | ») 
= ( W E < » I e-Hof!{ (l-/*)Ct+C»-/*C*C*+) | n), 

which is zero, if 

( 1 / Z 0 ) I > I e~™Ck+Ck !»> = /», 
and 

(1/Z0)I> I e~™CkCk+1 n) = 1 - /*. 

(12) 

(13) 

The number fkj defined by (13), is just the occupation 
number for the state k, i.e., 

fk={l+eM**-ri}-1. (14) 

The contractions then introduce factors fk or 1—fk as 
indicated below. Using the linked-graph theorem, the 
result to second order can be given in the following form. 

In (Z/Z0) = ln(X) all graphs) = X) (linked graphs) 

=-vi:vkkh+fiY,\{k\v\i)\> 
k k,l 

X[/*(l-/i)/(«i-«»)]+etc. (15) 

•o ' O & K v 

Order I. 2. 3. 4. 

FIG. 1. Diagrams for the perturbation series of the partition 
function involving only two wave vectors. 

The second-order term in (IS) diverges logarithmically 
near the Fermi limit, and it is therefore necessary to 
make a partial summation over all orders of (8) in 
which only two wave vectors, k and /, are involved. If 
we represent the vertices by points with the values of u 
increasing upwards, the graphs of the terms to be 
summed are as shown in Fig. 1. 

When the operators are u ordered as in (8), it follows 
from (13) that an upward line corresponds to CkCk

+ and 
gives a factor l—fk and a downward line to Ci+Ci 
which gives a factor fi. The energy denominators for all 
these particular graphs are powers of ej—ek and the 
matrix elements at the vertices either Vki, Vik, Vkk, or 
Viu [Henceforth we use this abreviated notation rather 
than that of (15).] It is now easy to see that the above 
sequence of graphs gives the following contribution to 
ln(Z/Z0). 

k k,[ 

|F«l7*(Wi) 

-«» 

X 

\Vui\2fk(l-fi) 
= -p E vkkfh+p E ; , 

* *.««.-«*+{ J W » + 7 „ ( l - / i ) } 
(16) 

which remains finite at the Fermi limit. It may be noted 
that the lower limits of the integrals in (8) (i.e., the 
zeros) give no contribution because factors like e^€k~el)P, 
etc., combine with fk and fi in such a way as to lead to 
exact cancellation. There are, of course, many other 
terms in the expansion of ipi, but all will involve higher 
powers of the nondiagonal matrix elements Vki, and will 
therefore be neglected in the present approximate 
considerations. 

The range of ek and e* (now written for convenience 
as e and rj, respectively) over which the summand of the 
second sum of (16) differs appreciably from zero is shown 
in Fig. 2. 

Since all quantities in (16) apart from Vki depend 
only on the energies of the states k and I, the first step in 
the summation is to average \Vki\

2 over all relative 
directions 6 of the vectors k and /, and to assume that the 
result depends only on e and rj. This assumption is 
correct if the matrix elements are calculated with 
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FIG. 2. Range of integration 
for the second-order correction 
to the partition function. 

tion and is independent of temperature. If E\ denotes 
the energy correction in the first order, then 

hiZ=hiZo-p(E1+Ei)-p [ N(*)g(*)4>(e)de. (22) 
Jo 

The last term of (22) can be written 

f » 

Jo 
j8 N(e)g(eMe)de 

"N(e)g(e)de r" N(e)g(e)<U 

respect to free-electron wave functions. It will be 
assumed, therefore, that 

f»N(e)g{e)de f 
3/ : - / 5 / 
Jo l+e-«'-") J„ 

- [ \Vki\*shiBdO=K(M) = K(t,,e). 
2Jo 

(17) 

Let x=P(e—fx), then 

dx 

l _ | _ ^ ( e - M ) 
(23) 

To simplify the calculations the following assumptions 
and approximations are also made: (i) that in the 
demoninator of (16) /& and fi may be replaced by their 
values at absolute zero, (ii) Vkk is independent of k and 
equal to a constant V. Hence, if N(e) denotes the , . ' , ,, , ,. , u , , 
, ., , , ^ ^ /4^\ i -^ m which the usual approximation has been made of 

r0 0 rx dx r / x\ / x\ 
0 / N(e)g(e)cj>(e)de = J —]^U+-)g\u+-) 

-K"-D<"-D] •(24) 

density of states, the sum (16) may be written as an 1 • <.u i r £ a u • -4. 1 
i'r̂ n-1-ai oc fr îî Jc • replacing the lower limit —pfM by — °o m one integral. 

The partition function for the pure metal is well 
known and may be expressed 

integral as follows 

N(e)N(V)K(e,V) 
f(e)Ll-f(v)ldedn 

/•MO /• 

J a J a 

•q-e+lV 

N(e)N(r,)K(e,V) 
drj-

+ 

r}-e+2V 

> N(e)N(V)K(ejr}) 
de d 

Jim Jo y—e+2V 

N(e)N(V)K(e,v) 

lnZ0=/3{MM(M)-E(M)}+- f ln(l+<r*) 
PJo 

x W ( . + W i » - - ) | b ) (25) 

/•MO /•« 

Jo J o 
dr?- *(u), (18) 

where 

./o 

where 
' 0 ^ 0 7] — €+2V 

• { 1 + e - ^ - ^ } - 1 , €<Mo, 

and the second and third integrals are taken along the "~~a ^ *̂- ^ " ^ 1 ' 2J 

/•M 

Jo 
N(e)de, a n d £(/*) = / A ^ e ^ e , (26) 

* ( € ) = 

are both functions of temperature through their de-
pendence on p. On substituting (24) and (25) into (22) 

^ ' it follows that for low temperatures, 

boundary of the shaded region of Fig. 2. The term aris­
ing from the immediate neighborhood of (MO,MO) has 
been omitted as negligible compared with the others. In 
the last integral the symbols e and rj may be inter­
changed; and therefore, if 

7 T 2 f 

601 Ue 
-N(e)g(e) (27) 

>N(rj)K(eyri) 
g(*)=l drj+j dr,, (20) 

-V+2V ;M0 e-Ty-27 
= / *n+ 

Jo e—7?+2F J Ml 

the whole of the second sum of (16) may be written 

/•CO 

-PEI-P N(e)g(e)<l>(e)de, (21) 
• /0 

where £2 is the second-order energy due to the perturba-

It may be noted that N(IJL) is the density of states includ­
ing the factor 2 which arises as a consequence of each 
state being doubly occupied by electrons of opposite 
spins. 

The properties of an assembly consisting of a fixed 
number of electrons are obtained by using the relation, 

(dlnZ/da)p=n, (28) 

to determine ix when n is constant. The energy is then 
given by 

-(dlnZ/dj8)«==JS. (29) 
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The specific heat of the system Cv (it has been assumed 
throughout that the volume is constant) is given by 

c v = — ( — ) = 7 r . (30) 

Although 7 may readily be evaluated, it is sufficient for 
the present purpose to note that 

7 = 7o 
I N(u)lde #00 

where 70 refers to the pure metal 

-I/J 
(3D 

3. EVALUATION OF MATRIX ELEMENTS 

I t will be assumed that the potential V(t) arises from 
v screened unit positive charges randomly distributed 
through the volume v which contains N electrons and 
the same number of lattice sites. The solute concentra­
tion is therefore given by c— v/N. Hence 

F ( r ) = - e 2 E , e x p { - a | r - R 4 - | } / | r - R , | , (32) 

where R; denotes the position of the solute atoms, and 
a is the reciprocal of the screening length. 

If in order to estimate the magnitude of Vki we use 
free-electron wave functions defined by 

^ k = -
1 

t,ib»t (33) 

the following well-known result is readily obtained. 

Aire2 1 
vkl=- (k-l|2+«! 

. £ . ^ ( k - i ) . R i . ( 3 4 ) 

As a result of the random nature of the distribution of 
solute atoms, 

\Vk 

/ 4 T T £ 2 \ 2 

\ v ) ( |k-
(35) 

- l | 2 +a 2 ) 2 

The average of this expression over all directions of I 
relative to k depends only on k2 and I2 and therefore is in 
accordance with assumption (17). 

In order to simulate the effect of the peak in the 
density of states of copper just below the Fermi limit 
and at the same time enable the integrals to be evaluated 
without too much difficulty we adopt the following 
model. 

N(V) = No+Npd(rj-e1)J e1<lxo, (36) 

where No is a constant. Here p is a fraction of order 10"1. 
I t is further assumed that K(jj,,rj) —»0 for large values 
of r] as would be the case with (35). Substituting (36) 
into (20) gives 

«(€) = 
N0K(ejV) p NoK{e,rj) /"» N0K{t 

= / drj+ 
Jo e—r]+2V J m e—rj— 

-drj 
2V 

+ . (37) 
e-€!+2V 

When e^/xo it will be seen that the first two integrals 
are of opposite sign and tend to cancel each other, and 
their contribution to g'(ju) will not be considered further. 
The third term represents the effect of the peak in N(e) 
and its variation with e results mainly from the de­
nominator. Hence a reasonable approximation is 

g'(tx)=-NpK(»,e1)/(iJi-e1+2V)2, and tf'G*) = 0. (38) 

Thus 

7 = To 1 
KMNp 

(/x-ex+27)2 
(39) 

To estimate the additional term in 7 we use (35) and 
(17) and find 

K(p,p)Np (4we2)2/ h 

122 
Xlm) IX2(W2+4:WIJ)\N/ 

where 0 is the atomic volume which may be written 
12=|7rfs

3, and w= (fo2/2ni)a2. Hence using the free-
electron approximation to determine juo and writing for 
simplicity, w = p, 

K(w)Np p/256y'* (e2/rs)
2 

~5\47rV 
•Cy (41) 

/x' 0 \47rV M 

which gives finally, neglecting 2V compared with /x—ei 

0.13 J (e2/rs)
2 

Y = 7o 1 
(l-ex/zx)2 M2 

(42) 

Suppose the ratio of the two energies is unity, that €1 
lies TQ of /xo below the Fermi limit, and that ^ d O " 1 , i.e., 
one-tenth of the electrons lie under the effective part 
of the peak. These rough estimates which seem reason­
able enough then give 7 = 7 o ( l + c ) , where c is the con­
centration expressed as a fraction. 

4. RELATION TO RESIDUAL RESISTIVITY 

Imagine a hole to exist in the Fermi distribution at 
absolute zero in the neighborhood of ei. Elastic scatter­
ing due to impurities will result in a finite lifetime r of 
any particular state k of this hole. This lifetime will be 
approximately equal to the relaxation time for impurity 
resistivity. Each level therefore will have a width of 
order h/r. The delta function of (36) is therefore effec­
tively replaced by a function of width fi/r, and if ju—e, 
is small part of the tail will overlap the Fermi limit and 
give a contribution to the linear electronic specific heat. 
This argument can be made semiquantitative as follows. 
The linewidth at e may be written 

h/r 

^{(e-v)2+Wry} 
(43) 

and hence if the density of states in the pure metal is 

file:///47rV
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2Vo(i?) in the solid solution it is 

No{v)h/T 
N(e)-

Jo *{(*-r,Y+{h/ (*A)*> 
-dr). (44) 

For the model in which the density-of-states No(ri) is 
as given by (36) it follows that 

Nfa) = Nr 

(h/r)Np 

r{(M-6x)2+(Vr)2} 
(45) 

Hence when ft/V^u—«i, which implies that the correc­
tion is small and corresponds to a second-order effect, 

Nfa) = N*+ 
Np{ft/r) 

and 

7 = YoU 

7T/x2(l — ei//z) 

*(»A) 
7TM(1 — €i/ju)5 

(46) 

(47) 

where the approximation Noix^N has been used. The 
relaxation time is given by the well-known formula, 

ft mkv 

2wft2 f 
Jo 

Vki\
2(l-cosd)sinddO, (48) 

where v=ttN is the volume which contains v impurities 
and with respect to which the electronic wave functions 
are normalized. If we define half of the integral as 
iT'Gujju), then a simple calculation shows that 

and 

tr^&cNK'/lp, (49) 

7 = 7 o { l + [ 3 i T ^ / 2 U - 6 i ) 2 ] } , (50) 

which is similar to (39) apart from the numerical factor 
3/2, the neglect of 2 V in the denominator and the differ­
ent definitions of K and K'. Both derivations show that 
the addition to the electronic specific heat is proportional 
to the residual resistivity. 

5. COMPARISON WITH EXPERIMENTAL RESULTS 
The electronic specific heats of dilute solid solutions 

of Zn and Ge in Cu have been measured by Rayne3 and 
by Veal and Rayne.4 It is found that initially for small 
concentrations of the solute y increases in both cases. 
Since the Fermi limit lies beyond the peak of the density 
of states a simple theory would suggest a decrease of y 
due to the increase of the electron concentration. This 
decrease is easily calculated and is indicated by Veal 
and Rayne. If we attribute the difference between the 
observed increase and the expected decrease to virtual 
electron scattering and express the results for the initial 
slopes by giving the values of b in y/yo=l+bc, where 
c is the fractional concentration, then for Zn we find 
b—1.4 and for Ge, £=5.8. Equation (42) appears there­
fore to give values of b of roughly the right magnitude. 
Moreover, as might be expected, Ge with the greater 
scattering power has the higher value. 

There are other examples where the observed elec­
tronic specific heat is larger than would be anticipated 
from a simple band model. For example, Keesom and 
Kurrelmeyer5 find for a copper-nickel alloy containing 
approximately 20 at.% Ni, a y value which is 1.56 times 
as great as the y value for pure Cu. Conventional theory 
visualizes the d band as just filled in CU60N140. At 80% 
Cu the Fermi limit will be beyond the point where N (e) 
rises steeply due to the d levels. A similar situation to 
that discussed in the preceding theory therefore exists 
and may perhaps be explained in the same way. The 
measurements of Hoare and his collaborators6-7 on 
Ag-Pd and Au-Pt point in the same direction. 
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